Part Number Hot Search : 
R3010 CDRH6 2SK2094 GSM900D 74HCT24 0000X LM1101N5 HD74HC75
Product Description
Full Text Search
 

To Download IRF7492PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 95287A
IRF7492PBF
HEXFET(R) Power MOSFET
Applications l High frequency DC-DC converters l Lead-Free
VDSS
200V
RDS(on) max
79mW@VGS = 10V
ID
3.7A
Benefits l Low Gate to Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current
S S S G
1 2 3 4
8 7
A A D D D D
6 5
Top View
SO-8
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C dv/dt TJ TSTG Drain-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds
Max.
200 20 3.7 3.0 30 2.5 0.02 9.5 -55 to + 150 300 (1.6mm from case )
Units
V V A W W/C V/ns C
Thermal Resistance
Symbol
RJL RJA
Parameter
Junction-to-Drain Lead Junction-to-Ambient
Typ.
--- ---
Max.
20 50
Units
C/W
Notes through are on page 8
www.irf.com
1
02/23/07
IRF7492PBF
Static @ TJ = 25C (unless otherwise specified)
Parameter Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage BV(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 200 --- --- 2.5 --- --- --- --- Typ. --- 0.20 64 --- --- --- --- --- Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 79 m VGS = 10V, ID = 2.2A --- V VDS = VGS, ID = 250A 10 VDS = 160V, VGS = 0V A 250 VDS = 160V, VGS = 0V, TJ = 125C 100 VGS = 20V nA -100 VGS = -20V
Dynamic @ TJ = 25C (unless otherwise specified)
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 7.9 --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 39 9.2 15 15 13 27 14 1820 190 94 780 89 150 Max. Units Conditions --- S VDS = 50V, ID = 3.7A 59 ID = 2.2A --- nC VDS = 100V --- VGS = 10V --- VDD = 100V --- ID = 2.2A ns --- RG = 6.5 --- VGS = 10V --- VGS = 0V --- VDS = 25V --- pF = 1.0MHz --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 160V, = 1.0MHz --- VGS = 0V, VDS = 0V to 160V
Avalanche Characteristics
Parameter
EAS IAR Single Pulse Avalanche Energy Avalanche Current
Typ.
--- ---
Max.
130 4.4
Units
mJ A
Diode Characteristics
IS
ISM
VSD trr Qrr
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge
Min. Typ. Max. Units --- --- --- --- --- --- --- --- 69 200 2.3 A 30 1.3 100 310 V ns nC
Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25C, IS = 2.2A, VGS = 0V TJ = 25C, IF = 2.2A di/dt = 100A/s
D
S
2
www.irf.com
IRF7492PBF
100
TOP VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V
100
TOP VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V
ID, Drain-to-Source Current (A)
10
ID, Drain-to-Source Current (A)
1
BOTTOM
10
BOTTOM
5.5V
1
0.1
5.5V
0.01
0.001 0.1 1
20s PULSE WIDTH Tj = 25C
0.1
20s PULSE WIDTH Tj = 150C
0.1 1 10 100 1000
10
100
1000
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100.00
3.0
I D = 3.7A
RDS(on), Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current ()
2.5
10.00
T J = 150C
2.0
T J = 25C
1.00
1.5
1.0
0.10 4.0 5.0
VDS = 50V 20s PULSE WIDTH
6.0 7.0 8.0
0.5
0.0 -60 -40 -20 0 20 40 60 80 100
V GS = 10V
120 140 160
VGS, Gate-to-Source Voltage (V)
Tj, Junction Temperature (C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7492PBF
100000 VGS = 0V, f = 1 MHZ Ciss = C + Cgd, C SHORTED gs ds Crss = C gd Coss = C + C ds gd
12
VGS, Gate-to-Source Voltage (V)
ID= 2.2A
10 8 6 4 2 0
VDS= 160V VDS= 100V VDS= 40V
10000
C, Capacitance(pF)
Ciss
1000
100
Coss Crss
10 1 10 100 1000
0
10
20
30
40
50
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
100
OPERATION IN THIS AREA LIMITED BY R DS(on)
ID , Drain-to-Source Current (A)
I SD , Reverse Drain Current (A)
10
10 100sec
TJ = 150 C
1
TJ = 25 C
1 1msec Tc = 25C Tj = 150C Single Pulse 1 10 100
0.1 0.2 0.4 0.6
V GS = 0 V
0.8 1.0
0.1
10msec 1000
V SD,Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7492PBF
4.0
VDS VGS
3.0
RD
RG 10V
Pulse Width 1 s Duty Factor 0.1 %
D.U.T.
+
ID , Drain Current (A)
-V DD
2.0
1.0
Fig 10a. Switching Time Test Circuit
VDS 90%
0.0 25 50 75 100 125 150
TA , Ambient Temperature (C)
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Ambient Temperature
Fig 10b. Switching Time Waveforms
100
(Z thJA )
D = 0.50
10
0.20 0.10
Thermal Response
0.05 P DM t1 t2 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = 2. Peak T 0.1 0.0001 0.001 0.01 0.1 1 t1/ t 2 +T A 100 1000
J = P DM x Z thJA
0.02 1 0.01
10
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF7492PBF
RDS(on) , Drain-to -Source On Resistance (m)
RDS (on) , Drain-to-Source On Resistance (m )
100 90 80 VGS = 10V 70 60 50 40 0 5 10 15 20 25 30 ID , Drain Current (A)
500
400
300
200
ID = 3.7A
100
0 5 6 7 8 9 10 11 12 13 14 15
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance Vs. Drain Current
Current Regulator Same Type as D.U.T.
Fig 13. On-Resistance Vs. Gate Voltage
50K 12V .2F .3F
VGS
QGS
D.U.T. + V - DS
QG QGD
300
VG
VGS
3mA
TOP
Charge
IG ID
250
BOTTOM
ID 2.0A 3.5A 4.4A
Current Sampling Resistors
EAS , Single Pulse Avalanche Energy (mJ)
200
Fig 14a&b. Basic Gate Charge Test Circuit and Waveform
150
100
15V
V(BR)DSS tp
VDS L
DRIVER
50
RG
20V
D.U.T
IAS
+ V - DD
0 25 50 75 100 125 150
A
I AS
tp
0.01
Starting Tj, Junction Temperature
( C)
Fig 15a&b. Unclamped Inductive Test circuit and Waveforms
Fig 15c. Maximum Avalanche Energy Vs. Drain Current
6
www.irf.com
IRF7492PBF
SO-8 Package Outline
Dimensions are shown in millimeters (inches)
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
c D E e e1 H
1
2
3
4
.050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e
K L y
e1
A
K x 45 C 0.10 [.004] y 8X c
8X b 0.25 [.010]
A1 CAB
8X L 7
NOT ES : 1. DIMENS IONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 7 DIMENS ION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050] 6.46 [.255]
F OOTPRINT 8X 0.72 [.028]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF7101 (MOS FET ) DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = AS S EMBLY S IT E CODE LOT CODE PART NUMBER
INT ERNAT IONAL RECT IFIER LOGO
XXXX F7101
www.irf.com
7
IRF7492PBF
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
When mounted on 1 inch square copper board. Coss eff. is a fixed capacitance that gives the same charging time ISD 2.2A, di/dt 210A/s, VDD V(BR)DSS,
TJ 150C. as Coss while VDS is rising from 0 to 80% VDSS.
Starting TJ = 25C, L = 14mH
RG = 25, IAS = 4.4A.
Pulse width 400s; duty cycle 2%.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/2007
8
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRF7492PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X